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We consider the stability with respect to three-dimensional perturbations of columnar
vortices on the f-plane and as a function of the strength of a stabilizing density
stratification parallel to the axis of the vortex. We seek to understand the dynamics
of the processes through which such a vertically oriented barotropic vortex may be
destabilized. As models of the basic vorticity distribution we consider both Kelvin–
Helmholtz vortices in shear and ‘Kida-like’ vortices in strain. In the case of rotating
unstratified flow, an isolated anticyclonic vortex column is shown to be strongly
destabilized to three-dimensional perturbations by small values of the background ro-
tation, while rapid rotation strongly stabilizes both anticyclonic and cyclonic columns,
as expected on the basis of the Taylor–Proudman theorem. The dominant instabil-
ity mechanism which drives the destruction of anticyclonic vortices in the presence
of slow background rotation may be understood to constitute a three-dimensional
inertial (centrifugal) instability. Through explicit analysis we show that sufficiently
strong density stratification stabilizes the two-dimensional columnar structures to dis-
ruption by this and additional modes of instability that exist even in the absence of
rotation. We furthermore demonstrate that there exists a second fundamental mode
of instability in the presense of background rotation which affects only anticyclonic
vortex columns whose cross-sections are elliptical. Only when the ellipticity of the
vortex is sufficiently high does this mode dominate the centrifugal mode. The process
whereby anticyclonic vortices may be selectively destroyed appears to provide a pos-
sible explanation of an asymmetry that is sometimes observed to be characteristic of
the atmospheric von Kármán vortex streets that are observed in the lee of oceanic
islands. The anticyclonic branch of the street often seems to be absent. More gener-
ally, the centrifugal mechanism for the selective destruction of anticyclones discussed
herein very clearly explains a number of recent results obtained from both laboratory
experiments and numerical simulations.

1. Introduction
Large-scale geophysical flows in the atmosphere and ocean are often dominated

by horizontal motions in consequence of the strong influence of both rotation and
stratification. In many cases, these quasi-two-dimensional flows also have embedded
large-scale shear in the horizontal velocity which plays an essential role in the
dynamics and which may give rise, through the barotropic instability mechanism, to
the development of a two-dimensional train of vortices in which individual vortex
axes are oriented vertically. The evolution of such vorticity distributions will not
depend on the background rotation if the influence of rotation is considered from
an f-plane perspective, nor on fluid stratification if the axis of rotation and density
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gradient are parallel to the axis of the vortices in the developed two-dimensional flow.
In such circumstances two-dimensional evolution of the flow may be studied through
numerical solution of the two-dimensional nonlinear (barotropic) dynamical system
which includes the influence of neither stratification nor background rotation.

If each vortex column in the array generated in this way is individually stable
to arbitrary three-dimensional perturbations then even if the system were to be
integrated forward in time using a fully three-dimensional model, the same history of
flow evolution would be obtained as in a purely two-dimensional analysis. Our goal
in this paper is to provide a detailed assessment of the circumstances in which such
columnar structures would be expected to remain linearly stable and, when instability
occurs, to characterize it fully.

The dynamical processes whereby such vortex columns may be formed are ex-
tremely interesting in themselves, and in this connection study of the evolution of
a free shear layer has come to occupy a central position in theoretical hydrody-
namics. Detailed analyses of the two-dimensional evolution of such shear flows have
of course been abundantly discussed in the literature on mixing layers (e.g. Peltier,
Halle & Clark 1978; Corcos & Sherman 1984; Klaassen & Peltier 1985a; Lesieur
et al. 1988; Smyth & Peltier 1991, 1993) and through such analyses an idealized
picture has emerged of the two-dimensional evolution of temporally growing ho-
mogeneous shear layers. Initially, the shear layer ‘rolls up’ to produce a train of
discrete two-dimensional Kelvin–Helmholtz vortices whose wavelength is approxi-
mately seven times the initial depth of the layer. As the initial instability saturates,
the subharmonic vortex pairing instability (e.g. Kelly 1967; Klaassen & Peltier 1985b)
induces adjacent vortices to orbit one another and merge. As a result, each pair
of vortices combines to produce a single vortex within which the primary vortices
remain initially apparent, a structure which is then further transformed by diffusion
into a single coherent vortex within a train of such structures (e.g. Smyth & Peltier
1993). The number of vortices is thereby reduced by a factor two and their scale
is increased by the same factor. As a result, the effective thickness of the so-called
mixing layer is doubled. This process then continues with further pairing events
which lead to further broadening of the mixing layer (see Smyth & Peltier 1993 for
an explicit example of the way in which continuous pairing drives the evolution of
the mixing layer in a two-dimensional flow characterized by relatively large Reynolds
number).

Only in very special circumstances, however, will such flows remain two-dimensional.
Laboratory experiments that have been specifically designed to investigate the evo-
lution of mixing layers (e.g. Wygnanski et al. 1979; Browand & Ho 1983) have
demonstrated that fully three-dimensional motions invariably arise even though the
flow may tend to remain quasi-two-dimensional on the scale of the large vortices.
Recent experimental analyses of the evolution of barotropic vortices in a rotating
environment (e.g. Kloosterziel & van Heijst 1991) have also demonstrated that the
behaviour of initially two-dimensional cyclonic and anticyclonic vortices differs dra-
matically at moderate Rossby numbers, a fact that could be explained only by the
presence of three-dimensional secondary circulations in the flow. (This conclusion
follows immediately from the fact, previously noted, that two-dimensional vortices do
not sense the background rotation as long as the influence of rotation is considered
from an f-plane perspective and the axis of rotation is aligned with the axis of the
vortices.) In order to develop a full understanding of experimental results such as
those of Kloosterziel & van Heijst (1991), it is therefore essential to consider, from
the most general possible perspective, the issue of vortex column stability.
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Further analyses of this issue have recently been provided by Smyth & Peltier (1994)
who focused upon the question of the linear stability of both non-rotating and rotating
columnar vortices and by Dritschel & de la Torre Juarez (1996) who have analysed
the linear stability of tall columnar vortices and the nonlinear development of such
instabilities under the quasi-geostrophic approximation. Carnevale et al. (1997) have
furthermore focused upon a model system close to that of Smyth & Peltier (1994)
and investigated the way in which the three-dimensional centrifugal instability of the
unstratified vortex column evolves at finite amplitude. In the additional analyses of
this issue that form the core of the present paper, we will employ two alternative
models of the vorticity distribution in the barotropic column in order to determine
whether there might exist a finite (and hopefully small) set of universal mechanisms
which control stability. Our analyses will pertain to the regime of moderately high
Rossby number, for a reason that will become apparent below, and we will include the
influence of density stratification parallel to the (vertical) axis of the vortex column.
The first model that we will employ consists of an elliptical vortex in shear generated
by a single stage of subharmonic merging, in a spatially periodic train of Kelvin–
Helmholtz vortices, which takes place at finite but moderately large Reynolds number.
The second model we will employ is that provided by a much simpler distribution
similar to that introduced by Kida (e.g. see Moore & Saffman 1971; Kida 1981) which
consists of an in general elliptical, horizontally uniform, patch of vorticity in a strain
field. By comparing the results of analyses performed on these radically different
structures, we will be testing the extent to which the mechanisms that lead to their
destruction may be considered universal.

The theoretical techniques required to perform such analyses are by now well-known
and have been described in detail by Pierrehumbert & Widnall (1982), Klaassen &
Peltier (1985b, 1989, 1991) and Smyth & Peltier (1991, 1994). This methodology allows
one to cast the linear three-dimensional perturbation equations into the form of a
standard matrix eigenvalue problem whose solutions reveal the instability charac-
teristics of the two-dimensional flow to three-dimensional perturbations. The initial
analyses of the stability of an unstratified barotropic vortex column on the f-plane
performed by Smyth & Peltier (1994) clearly demonstrated the existence of a three-
dimensional centrifugal instability to which anticyclonic vortex columns are subject
in circumstances in which the Rossby number is moderate (i.e. of order unity). This
mechanism arises in flow with relatively weak background rotation which tends to
reduce the absolute vorticity of an anticyclonic vortex to a value near zero and,
thereby, to destabilize the flow. The conditions in which three-dimensional centrifugal
instability arises are extremely interesting since, although the necessary condition for
instability due to Rayleigh does successfully predict the spatial region within which
the instability develops, detailed analysis is required to determine the prefered axial
scale. A central motivation for the work to be described below is to understand
whether this mechanism (or, in fact, the family of mechanisms, as we will see) may
play an important role in circumstances that are geophysically interesting.

In addressing the issue of geophysical relevance, it is clearly important to understand
the extent to which this mechanism for the selective destruction of anticyclonic vortex
columns may be sensitive to the influence of density stratification parallel to the
axis of the column. If infinitesimally weak stratification were to suffice to quell the
instability, for example, then the mechanism might be expected to be less relevant
to the understanding of atmospheric and oceanographic phenomenology than would
otherwise be the case. In figure 1 we present an example of one class of observation
to which the analyses to be reported herein may be applied. This shows satellite
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(a)

(b)

Figure 1. (a) Symmetric and (b) asymmetric von Kármán vortex streets generated in the lee of the
island of Jan Mayen (71◦ N, 8.5◦ W) which is 55 km in length. The highest peak, a cone at the
northeast end, is 2277 m. The airflow is from the north (top) and blocked by the island, outlined in
white.
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photographs of the von Kármán vortex streets that are very often observed to
develop in the lee of Jan Mayen island (71◦ N, 8.5◦ W). In (a) the street is of
conventional form with both the anticyclonic and cyclonic branches equally well
developed. This is in contrast to (b) in which the anticyclonic vortices do not appear.
Since the environment in which these structures develop is stratified in the vertical
and since it is reasonable to expect that the influence of such stratification will be
to reduce the intensity of a three-dimensional instability, we might imagine that the
anticyclones in the street would be more likely to be destroyed when the vertical
stability is weak than when it is strong. The circumstances in which the issue of
the stability of a stratified vortex column arises, however, very clearly transcend this
specific phenomenon and might be seen more generally to arise in the broad context
of rotating stratified turbulence. It may well be, in fact, that the broken symmetry
evident in figure 1 is due to a process other than that to be described herein. Perhaps
the most definitive demonstration of the existence of a mechanism that selectively
destroys anticyclones under conditions of moderately high Rossby number is that
observed in the numerical simulations of Bartello, Metais & Lesieur (1994) and in
the previously mentioned laboratory experiments by Kloosterziel & van Heijst (1991).
Our focus in what follows will therefore be on the central issue of the determinants
of barotropic vortex column stability rather than upon any particular circumstance
in which the consequences of such stability/instability become manifest.

In the next section of the paper we will review, and considerably extend, the
theoretical methods that we have previously developed to enable detailed investigation
of the broad class of problems in which the issue of the stability of two-dimensional
flow to arbitrary three-dimensional perturbations arises. Section 3 is devoted to the
presentation and analysis of the results that we have obtained by applying this
theoretical structure to analyse the stability of the elliptical vortex column in shear,
whereas §4 is devoted to a parallel discussion of the ‘Kida-like’ vortex in strain.
Conclusions are summarized in §5.

2. Methodology
In this section, the analytical and numerical methods that have been developed to

simulate the evolution of two-dimensional nonlinear vortices in shear flow and to test
the linear instability characteristics of these flows to three-dimensional perturbations
will be presented. The two-dimensional nonlinear model has been adapted from the
previous studies of mixing layers by Smyth & Peltier (1991, 1993). We will also
discuss the ‘Kida-like’ model vortex in order to contrast it to the elliptical vortex that
is generated by pairing in a train of Kelvin–Helmholtz waves. The three-dimensional
linear stability methods developed originally by Klaassen & Peltier (1985b, 1989,
1991) and Smyth & Peltier (1989, 1991, 1994) are also extended to incorporate the
influence of a stable density stratification parallel to the axis of a two-dimensional
vortex.

2.1. Two-dimensional vortical coherent structures

As mentioned previously, the first model of a barotropic columnar vortex to be
employed herein will be one for an elliptical vortex generated by the pairing interaction
in a free shear layer. The initial state of the shear layer is shown in figure 2. The
geophysically unconventional labelling of the coordinate axes has been employed
to maintain consistency with previous analyses in which the coordinate direction
normal to the mean flow was taken to be the z-direction. If the angular velocity Ω
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Figure 2. The coordinate system and the initial state of the shear flow. The system rotates along the
y-axis with the angular velocity Ω = f/2, where f is the Coriolis parameter. The density gradient is
parallel to the y-axis. L and H are the x- and z-dimensions of the computational domain. U and h
are the velocity and length scales of the shear layer which were used for non-dimensionalization of
the equations of motion.

is taken to represent the Earth’s rotation, then our x-, y- and z-axes would denote
the zonal, vertically downwards and meridional directions, respectively. At the initial
instant of time, we may assume the flow to consist of a two-dimensional shear layer
with hyperbolic-tangent velocity profile U(z) = U0 tanh(z/h), where U0 and 2h are
the characteristic velocity and depth of the shear layer respectively. The coordinate
system rotates with background angular velocity Ω = f/2, where f is the usual
Coriolis parameter that appears in both oceanographic and atmospheric contexts. In
this basic state we will assume that density increases in the y-direction and that the
gravitational body force in this direction is balanced hydrostatically. The instability
of this basic state is evolved in a domain with x- and z-dimensions of L and H
respectively.

In this domain the flow satisfies the Navier–Stokes and continuity equations for
two-dimensional incompressible flow which, on the f-plane, take the form

∂U

∂t
+ (U · ∇)U = −1

ρ
∇p+ ν∇2U − f ×U + g, (2.1a)

∇ ·U = 0, (2.1b)

in which the velocity U = (U, 0,W ), the Coriolis parameter f = (0,−2Ω, 0), p is the
pressure, ν is the kinematic viscosity, g = (0, g, 0) is the gravitational acceleration and
t denotes time. The vorticity ω and the stream function ψ for this two-dimensional
flow are defined in the usual way according to

ω = ∇×U =⇒ ω = (0, ω, 0), ω =
∂U

∂z
− ∂W

∂x
, (2.2a)

U = ∇× (ψj) =⇒ U = −∂ψ
∂z

, W =
∂ψ

∂x
. (2.2b)

In terms of these dynamical variables the vector coupled system (2.1) reduces to the
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following pair of partial differential equations in the scalar fields ω and ψ:

∂ω

∂t
=
∂ω

∂x

∂ψ

∂z
− ∂ω

∂z

∂ψ

∂x
+

1

Re
∇2ω, (2.3a)

∇2ψ = −ω, (2.3b)

in which Re = hU0/ν is the Reynolds number. Note that in writing (2.3) the above
system has been non-dimensionalized in terms of the length scale h which equals half
the total depth of the shear layer (see figure 2) and the velocity scale U0 which equals
half the total change in velocity across the shear layer. Note also that system (2.3)
for the vorticity and the stream function of the two-dimensional flow depends neither
upon the vertical stratification nor the background rotation. The physical influence of
both rotation and stratification affects only three-dimensional motion and, therefore,
the barotropic dynamics is unsensitive to their influence. The vertical stratification
may be characterized by the buoyancy frequency N2 = (g/ρ) dρ/dy in which g is the
gravitational acceleration (assumed constant) and ρ denotes the density field, whereas
the background rotation Ω is characterized by the Coriolis parameter f = 2Ω.

In the z-direction we solve (2.3) subject to boundary conditions

ω = ψ = 0 on z = 0, H. (2.4)

In the streamwise direction we assume the flow to be periodic with fundamental
wavenumber α such that α = 2π/L. We may therefore expand the vorticity ω and
stream function ψ in terms of the following Fourier series decompositions:

ω(x, z, t) =

N∑
ν=−N

ων(z, t)e
iναx, ψ(x, z, t) =

N∑
ν=−N

ψν(z, t)e
iναx. (2.5)

Note also that ων = ω∗−ν and ψν = ψ∗−ν (in which the superscript ∗ denotes complex
conjugation) since the vorticity ω and the stream function ψ are real-valued functions,
and it is therefore unnecessary to compute coefficients in these expansions with
negative indices. Solutions are constructed using well-established procedures (e.g. see
Smyth & Peltier 1991)

A typical result obtained through application of this two-dimensional model to
solve the initial value problem for the barotropic evolution of the free shear layer
is shown in figure 3. For the purpose of this analysis the basic-state profile of
vorticity was assumed to be ω(z) = 1/ cosh2 z and this was perturbed at t = 0 by
the superposition of a component consisting of small-amplitude white noise and a
harmonic disturbance with wavelength equal to half the length of the domain. The
length of the domain was set equal to twice the wavelength of the fastest growing
mode of linear stability theory and the structure of the harmonic component of the
perturbation to the parallel flow was determined by the eigenfunction of this mode.
For the purpose of this analysis the Reynolds number was set to 300, typical for
most small-scale shear flows generated in the laboratory. The x- and z-dimensions of
the domain were chosen to be L = 28 and H = 40, respectively, in non-dimensional
units. To fully resolve details of the flow the number of points in the z-direction of
the domain, M, and the number of spectral modes, N, in equations (2.5) were set to
256 and 64 respectively. In figure 3 the evolution of the barotropic vorticity field is
shown in a reduced portion of the domain of length L = 28 and width 28 whereas
the full width H = 40.

The individual frames in figure 3 illustrate the vorticity distribution at a sequence
of non-dimensional times t. At the instant of time t = 20, the initially unstable
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t = 20 t = 40 t = 50 t = 80

t =110 t =160 t = 220 t = 285

Figure 3. The evolution with time of vorticity fields for the two-dimensional hyperbolic-tangent
shear layer in the domain chosen so as to accommodate two wavelengths of the primary
Kelvin–Helmholtz instability. The Reynolds number Re = 300. Non-dimensional time is shown
in the pictures. The visual non-dimensional size of the domain is 28× 28.

shear layer is observed to have produced a train of two vortices with wavelength
equal to half the length of the domain. As one may observe, the Kelvin–Helmholtz
instability grows rapidly and the subharmonic of the primary disturbance is visible by
t = 50. From t = 50 to t = 110 the vortices are undergoing the subharmonic pairing
interaction and by time t = 110 a single vortex has begun to emerge within which
the primary ‘parent’ vortices still remain apparent. This structure is observed to be
converted into a single elliptical vortex by t = 285. If the numerical domain were
not restricted in length then a second pairing interaction would begin at this time,
but the periodic boundary conditions prevent further merging and the numerical
simulation is thus terminated at this point. This vortex is of course implicitly part
of a train of elliptical vortices which is similar in form to the analytical solution of
the Euler equations obtained by Stuart (1967) when the free parameter in his model
is appropriately chosen. The evolution of the vortex in this phase of its evolution is
characterized by a slow viscous diffusion of vorticity out of the core and by a weak
nutation due to the influence of the neighbouring vortices.

In what follows we will use the vorticity distribution in the last phase of figure 3 as
the first model of the cross-section of a barotropic columnar vortex to be employed
as basic state in our analyses of instability.

The second model of the vorticity distribution in the columnar vortex that we
will use for comparison purposes is similar to the Kida model. The Kida model has
often been invoked as a simple model of a vortex in the field of distant vortices.
The model has also been successfully applied to understanding the Great Dark Spot
of the planet Neptune (Polvani et al. 1990). The Kida vortex (Kida 1981; Moore &
Saffman 1975) is a two-dimensional elliptical patch of vorticity superimposed on a
constant uniform irrotational background strain field in inviscid incompressible flow.
The total flow is in general time-dependent and the elliptical vortex undergoes both
nutation and rotation, although some steady solutions also exist (Moore & Saffman
1975). The x- and z-velocity components of the background straining flow may be
written U = −ez and W = −ex respectively, in which e is a constant rate of strain.
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U Ww
(a)

(b)

Figure 4. The two-dimensional stream function ψ, x-component of velocity U and z-component of
velocity W in the (X,Z)-plane for the Kida-like model (a) with the elliptical background vorticity
distribution presented in figure 6(b), and (b) with the circular background vorticity distribution
presented in figure 6(c).

The total flow is then characterized by uniform vorticity ω = ω0 inside and ω = 0
outside the ellipse. The model thus corresponds to an isolated elliptical vortex in an
irrotational straining field of infinite extent, and is not spatially periodic. The three-
dimensional stability theory to be employed herein to analyse the instability of the
previously discussed Kelvin–Helmholtz columnar vortex, however, assumes periodic
boundary conditions in the streamwise (x-) direction. Therefore, if we were to employ
the Kida vorticity distribution in the columnar vortex, a discrepancy would arise in
the boundary conditions between those satisfied by the two-dimensional basic-state
flow and those imposed for the purpose of the three-dimensional stability analysis. In
order to avoid this problem, we design a ‘Kida-like’ model of the basic-state columnar
vortex as follows. We begin by defining an, in general, elliptical vorticity distribution
with the ellipticity as a free parameter and with the vorticity constant within the
ellipse. We then solve ∇2ψ = −ω (see equation (2.3)) numerically in a computational
domain subject to periodic boundary conditions in the x-direction and boundary
conditions (2.4) in the z-direction. As a result, we implicitly obtain a periodic train
of elliptical columnar vortices with constant core vorticity ω0 in an irrotational strain
field. Examples of such solutions for the initial distribution of vorticity shown on
figure 6(b) (elliptical) and figure 6(c) (circular) are presented in figure 4 in terms of
the stream function and velocity field components U and W .

2.2. Three-dimensional stability theory for two-dimensional coherent vortical structures
in stratified rotating flow

We turn next to a discussion of the mathematical methods to be employed in the
three-dimensional linear stability analyses of the two models of a columnar vortex
described in the last section. The techniques required in the present context should
be viewed as an extension of those previously elaborated by Klaassen & Peltier
(1985b, 1989, 1991) and by Smyth & Peltier (1989, 1991, 1994). Further extensions of
these procedures will be required for present purposes to incorporate the influence of
density stratification parallel to the axis of the two-dimensional vortex.
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These extensions to existing theory will be based upon the Navier–Stokes equa-
tion, the continuity equation and the equation of state for three-dimensional in-
compressible vertically stratified and rotating flow in the Boussinesq and f-plane
approximations. Subject to these approximations, the appropriate field equations are

U t + (U · ∇)U = −1

ρ
∇p+ ν∇2U − f ×U +

ρ

ρ0

g, (2.6a)

∇ ·U = 0, (2.6b)

Dρ

Dt
= 0, (2.6c)

in which ρ is the density of the fluid and ρ0 a reference density. The innovation
with respect to previous work to be developed in what follows involves the addition
of a stabilizing density stratification parallel to the axis of rotation (y-axis). Note
that the two-dimensional basic-state flows described in the previous subsection are
independent of the spanwise coordinate y. Assuming, without loss of generality, that
three-dimensional perturbations vary sinusoidally in the spanwise direction parallel
to the axis of the vortex column, we may expand the three-dimensional fields as the
sum of the basic-state barotropic vortex plus a three-dimensional perturbation as:

Φ(x, y, z, t) = Φ̃(x, z, t) + Φ̂(x, z, t)eidy, Φ̂(x, z, t) � Φ̃(x, z, t) (2.7)

in which d is the spanwise wavenumber; Φ represents pressure or any component of
the velocity vector for the three-dimensional flow (note also that density perturbations
are represented as ρ(x, y, z, t) = ρ̃(y) + ρ̂(x, z, t)eidy), Φ̃ denotes the corresponding fields
of the two-dimensional basic state and Φ̂ represents the complex amplitude of the
perturbation to the basic state. This amplitude, according to (2.7), is assumed to
constitute a small perturbation to the basic-state flow.

Substituting these expansions into (2.6) and linearizing in the perturbations, we
obtain the following non-dimensional set of linear partial differential equations that
governs the fate of small-amplitude fluctuations:

ût = −Ũûx − Ũxû− W̃ ûz − Ũzŵ − p̂x +
1

Re
∆û+

1

Ro
ŵ, (2.8a)

v̂t = −Ũv̂x − W̃ v̂z − idp̂+
1

Re
∆v̂ +

1

Fr2
ρ̂, (2.8b)

ŵt = −Ũŵx − W̃ xû− W̃ ŵz − W̃ zŵ − p̂z +
1

Re
∆ŵ − 1

Ro
û, (2.8c)

ûx + idv̂ + ŵz = 0, (2.8d)

ρ̂t = −Ũρ̂x − v̂ − W̃ ρ̂z, (2.8e)

in which ∆Φ̂ ≡ Φ̂xx + Φ̂zz − d2Φ̂, the Reynolds number Re = hU0/ν, the Rossby num-
ber Ro = U0/fh and the Froude number Fr = U0/(Nh). Note that for the purpose
of non-dimensionalization the velocity scale U0 is taken to be equal to one-half the
total change in velocity across the shear layer as previously (see figure 2), the length
scale h is taken to be equal to one-half of the width of the shear layer, the scale
for the pressure perturbation is taken to be [p̂] = ρ0U

2
0 and the scale for the density

perturbation to be [ρ̂] = ρ0hN
2/g.

The first three equations in (2.8) may be combined to obtain an equation for
the three-dimensional divergence of the perturbation velocity which reduces to a
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diagnostic equation for the pressure that incorporates the constraint of continuity as

∆p̂ = − 1

Ro
(ûz − ŵz) +

id

Fr2
ρ̂− 2(Ũxûx + Ũzŵx + W̃ xûz + W̃ zŵz). (2.9)

To solve the set of stability equations (2.8) we restrict attention to the same domain
0 6 x 6 L, 0 6 z 6 H as that on which the barotropic vorticity equation was solved
to obtain our models of a barotropic columnar vortex. The boundary conditions
in the z-direction that must be satisfied by the amplitudes of the three-dimensional
perturbations Φ̂ are, explicitly, on z = 0, H:

ûz = v̂z = ŵ = p̂z = ρ̂ = 0. (2.10)

Since the boundary conditions in the x-direction are periodic we may apply the Galer-
kin method to represent the perturbation fields. Specifically the x- and z-dependences
of the perturbation fields are represented spectrally by introducing the following
complete set of orthogonal functions selected so that the boundary conditions for the
dependent variables are satisfied automatically:

Fλν = eiλαx cos
νπ

H
z, Gλν = eiλαx sin

νπ

H
z (2.11a, b)

In terms of these orthogonal functions, the velocity, density and pressure perturbation
fields may be expanded as: û

v̂
p̂

 =

 uλν
vλν
pλν

Fλν,

(
ŵ
ρ̂

)
=

(
wλν
ρλν

)
Gλν, (2.12)

in which it is understood that repeated indices are to be summed over.
It is worth noting that if the solutions of interest had appreciable amplitude near

the boundaries z = 0, H , the boundary condition for p̂ would need to be replaced by
p̂z = −Ro−1û and the boundary condition for ρ̂ would be ρ̂t = −Uρ̂x − v̂. It would
therefore follow, in the case in which f is non-zero, that the pressure perturbation
would be expanded in terms of the Gλν rather than Fλν to take into account the Coriolis
force. Similarly the density perturbation would be represented in terms of the Fλν
rather than Gλν to take proper account of the vertical motion. Therefore, coefficients
of the stability matrix Aκµλν (t) (see below) would have slightly different forms. In the
present application, the eigenfunctions of the stability problem for modes that are of
interest to us are localized far from the rigid boundaries and there is no appreciable
difference between the results obtained using the two different sets of boundary
conditions on z = 0, H , namely p̂z = 0, ρ̂ = 0 or p̂z = −Ro−1û, ρ̂t = Uρ̂x − v̂.

The procedure for the construction of solutions is completed by substituting (2.12)
into (2.8) and (2.9) and computing the inner products 〈F∗κµ•〉 or 〈G∗κµ•〉 with each
equation, where • represents any equation of the set (2.8) and (2.9) and in which the
symbol ∗ denotes complex-conjugation. This inner product is defined as

〈?〉 =
α

πH

∫ 2π/α

0

dx

∫ H

0

? dz (2.13)

The pressure may clearly be eliminated from the system (2.8) using the diagnostic
equation (2.9). The remaining equations can be reduced to a set of linear ordinary
differential equations. In following this procedure it is important to note that

〈F∗κµFλν〉 = δλνδµν(1 + δµ0) and 〈G∗κµGλν〉 = δλνδµν(1− δµ0).
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These operations reduce (2.8) to the following matrix form:

d

dt

 uκµ
vκµ
wκµ
ρκµ

 = Aκµλν (t)

 uλν
vλν
wλν
ρλν

 (2.14)

in which Aκµλν (t) is a complex matrix whose time-dependence reflects the time-
dependence of the two-dimensional background flow. It is defined as

Aκµλν (t) =


〈UU〉κµλν 0 〈UW 〉κµλν 〈Uρ〉κµλν
〈VU〉κµλν 〈VV 〉κµλν 〈VW 〉κµλν 〈Vρ〉κµλν
〈WU〉κµλν 0 〈WW 〉κµλν 〈Wρ〉κµλν

0 〈ρV 〉κµλν 0 〈ρρ〉κµλν

 . (2.15)

Explicit expressions for the four-dimensional arrays of interaction coefficients 〈UU〉κµλν ,
〈UV 〉κµλν , etc. will be found in the Appendix.

It is possible to decrease the size of the matrix Aκµλν (t), and therefore to decrease the
machine memory and CPU time required for the numerical calculations, by employing
the following procedures. From the continuity equation in the system (2.8) one may
obtain a diagnostic equation connecting uλν , vλν and wλν in the form

vλν = −λa
d
uλν +

iDν
d
wλν (2.16)

in which Dν = νπ/H . Substituting this diagnostic equation into the equation for ρκµ
in system (2.14) one may slightly modify its form by eliminating the dependence on
vλν . Following this operation the matrix Aκµλν (t) becomes

Aκµλν (t) =


〈UU〉κµλν 0 〈UW 〉κµλν 〈Uρ〉κµλν
〈VU〉κµλν 〈VV 〉κµλν 〈VW 〉κµλν 〈Vρ〉κµλν
〈WU〉κµλν 0 〈WW 〉κµλν 〈Wρ〉κµλν
〈ρU〉κµλν 0 〈ρW 〉κµλν 〈ρρ〉κµλν

 . (2.17)

It is now obvious that the set of equations for vκµ decouples from the system and in
order to further reduce the dimension of the matrix one may remove these equations
from (2.17) because uκµ, wκµ and ρκµ do not depend on vλν . Applying this further
reduction leads finally to the following set of ordinary differential equations:

d

dt

 uκµ
wκµ
ρκµ

 =

 〈UU〉κµλν 〈UW 〉κµλν 〈Uρ〉κµλν
〈WU〉κµλν 〈WW 〉κµλν 〈Wρ〉κµλν
〈ρU〉κµλν 〈ρW 〉κµλν 〈ρρ〉κµλν


 uλν

wλν
ρλν

 . (2.18)

One may further reduce the stability matrix Awλν
κµ(t) by noting that the elements

ωλν(ν=0) and ρλν(ν=0) influence neither the z-component of the velocity nor the density
perturbation field because Gλν(ν=0) ≡ 0. Therefore, one may put ωλν(ν=0) ≡ 0 and
ρλν(ν=0) ≡ 0 and exclude coefficients 〈WU〉κ0

λν , 〈WW 〉κ0
λν , 〈Wρ〉κ0

λν and 〈UW 〉κµλ0 , 〈WW 〉κµλ0 ,
〈ρW 〉κµλ0 as well as 〈ρU〉κ0

λν , 〈ρW 〉κ0
λν , 〈ρρ〉κ0

λν and 〈Uρ〉κµλ0 , 〈Wρ〉κµλ0 , 〈ρρ〉κµλ0 from the matrix
Aκµλν (t) and this once again leads to a further substantial decrease of the dimension
of the matrix. Note that in the case of unstratified flow (Fr−2 = 0) equation (2.18)



Stratification effects on the stability of columnar vortices on the f-plane 57

reduces to

d

dt

(
uκµ
wκµ

)
=

(
〈UU〉κµλν 〈UW 〉κµλν
〈WU〉κµλν 〈WW 〉κµλν

)(
uλν
wλν

)
, (2.19)

which clearly involves a very dramatic reduction of Aκµλν (t). It will be noted that (2.19)
is now identical to the equation obtained previously for the unstratified system by
Smyth & Peltier (1994).

Owing to the finite memory of available computers, we have of course been
obliged to truncate the above Galerkin series representations of the fields and for this
purpose have adopted the scheme employed by Klaassen & Peltier (1985b), namely
the triangular scheme 2 | λ | +ν 6 Nt, where Nt is a global truncation level.

Equation (2.18) may be rewritten in the equivalent vector form

dv

dt
= A(t)v; v =

 uλν
wλν
ρλν

 . (2.20)

Depending upon the time-dependence of the basic-state two-dimensional flow, the
solution of the evolution equation (2.20) could prove to be very complicated. In the
present context, however, our focus will be upon the stability characteristics of two-
dimensional vortical basic states which evolve on a timescale that is slow compared
to the timescale of the three-dimensional instabilities to which they are subject. In
such circumstances we may safely assume that temporal growth of the solution is
exponential as v = vne

σnt, and (2.20) then reduces to the standard matrix eigenvalue
problem:

σnvn = Āvn; Ā =
1

τ

∫ t2

t1

A(t′)dt′, (2.21)

in which σn, the eigenvalue of Ā, is an exponential growth rate, vn is the eigenvector
corresponding to this eigenvalue, Ā is a time-averaged stability matrix corresponding
to some time interval t1 6 t 6 t2 with τ = t2 − t1 the time interval over which A
exhibits no significant secular variation. If the growth rate of a particular mode of
interest is sufficiently large in comparison to some appropriate measure of the rate
of evolution of the background two-dimensional flow, then this approach is entirely
appropriate. In the analyses to follow, this approach will be justified a posteriori.
We may take as an appropriate measure of the fluctuations in the two-dimensional
Kelvin–Helmholtz flow a ‘growth rate’ based upon the Kelvin–Helmholtz wave kinetic
energy K ′ (Klaassen & Peltier 1985b), namely

σ2D =
1

2K ′
dK ′

dt
. (2.22)

Thus an eigenvalue and its corresponding eigenvector are a valid representation of
one of the realizably unstable modes of the Kelvin–Helmholtz flow only if

σn � σ2D. (2.23)

We employ this separation-of-timescales argument here rather than the TASM method
described in Smyth & Peltier (1994) because the latter method is flawed for reasons
made clear in Baym (1968).

In what follows we will use the vorticity distribution in the last phase (post-pairing
phase) of figure 3 as the first model of the cross-section of a barotropic columnar
vortex to be employed as basic state in our analyses of instability. The evolution of
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Figure 5. The evolution of (a) the Kelvin–Helmholtz wave kinetic energy, K ′, and (b) the instanta-
neous growth rate of the two-dimensional Kelvin–Helmholtz wave, σ2D , with time. The post-pairing
phase of the flow corresponds to the time interval marked on the figure (t1 = 110, t2 = 285).
σ̄3D presents the maximum time-averaged growth rates for the most unstable three-dimensional
longitudinal (L1, L2, L3), edge (E0, E1) and elliptical (ε) modes.

the Kelvin–Helmholtz wave kinetic energy during the post-pairing (t1 = 110, t2 = 285)
phase is quasi-periodic and characterized by a slow viscous diffusion and weak nuta-
tion of the vortex core due to the influence of the neighbouring vortices (see figure 5a).
The evolution of the mean flow is almost time-independent (its energy slowly decreases
owing to viscous friction), while the evolution of the Kelvin–Helmholtz wave-related
kinetic energy is characterized by a small-amplitude and weakly damped limit-cycle
oscillation. Note also that the kinetic energy of the parallel, time-mean component
of the flow is much larger than the kinetic energy of the Kelvin–Helmholtz wave.
(Detailed discussion of the energy budget for two-dimensional Kelvin–Helmholtz
waves will be found in Klaassen & Peltier 1985a.) In figure 5(b) we have recorded
the instantaneous growth rate of the two-dimensional Kelvin–Helmholtz wave, σ2D ,
as a function of time, together with the time-averaged growth rates of the most
unstable three-dimensional modes, σ̄3D , to be discussed below. The growth rates for
all three-dimensional unstable modes are far above the instantaneous growth rate
for the Kelvin–Helmholtz wave and this fact clearly justifies our two-timescale ap-
proach to the stability analyses of the post-pairing phase of the Kelvin–Helmholtz
flow.
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(a) (b) (c)

Figure 6. The two-dimensional background vorticity fields used as the basic state for the
three-dimensional stability analyses: (a) the vorticity field averaged on the time interval
110 6 t 6 280 for the post-pairing phase of the Kelvin–Helmholtz flow; (b) the vorticity field
for the Kida-like model vortex; (c) the vorticity field for the circular limit of the Kida-like model
vortex. The visual non-dimensional size of the domain is 28× 28.

For future reference, it should also be noted that the stability matrix A(t) is a linear
function of the background velocity fields. The time-averaged matrix is therefore
equivalent to averaging of the background fields over the time interval [t1, t2] and
then computing the stability matrix Ā by substituting the time-averaged fields into the
defining equations for 〈UU〉κµλν , 〈UV 〉κµλν , etc., instead of time-averaging the stability
matrix A(t) on the time interval [t1, t2]. Note that the vector v does not include terms
vλν (see (2.20)), so that in order to obtain the y-component of the perturbation velocity
we must employ the relevant diagnostic equation (2.16).

3. Columnar vortex stability: the Kelvin–Helmholtz model
In this section we will discuss the stability of the two-dimensional free shear

layer, with embedded coherent structure consisting of smooth elliptical vortices, to
three-dimensional perturbations. We will initially focus attention upon the barotropic
flow that was produced by a single step of the pairing interaction and which was
described in §2. On the basis of their stability analyses of the equivalent non-
stratified problem, Smyth & Peltier (1994) demonstrated that the instability spectra
for three-dimensional perturbations of the Kelvin–Helmholtz flow are self-similar
with respect to the phase of the pairing interaction, and this clearly allows us to
focus our attention on a single post-pairing phase of the flow. Because the length
of the computational domain for the post-pairing phase of the two-dimensional
flow equals the wavelength of the train of Kelvin–Helmholtz coherent structures,
the secondary instability analyses deliver only unstable modes whose streamwise
wavelength is double that of the primary wave (note that for the pre-pairing phase the
computational domain contains two wavelengths of the primary Kelvin–Helmholtz
instability). We will refer to the unstable modes of this system as longitudinal modes
and will denote them by (Ln, n = 1, 2, 3...) following Smyth & Peltier (1994). For
the purpose of the stability analyses to be reported here, we employ the standard
approach described above with the vorticity field for the post-pairing phase of the
two-dimensional Kelvin–Helmholtz flow averaged on the time interval 110 6 t 6 280.
This temporally averaged background vorticity field is shown in figure 6(a). The
global truncation level for our analyses is set to Nt = 37 (significantly higher than it
proved possible to achieve in the work of Smyth & Peltier 1994) for all analyses of
unstratified flows and to the slightly lower value Nt = 31 for all analyses of stratified
flows.
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Figure 7. The instability spectrum for the non-rotating unstratified Kelvin–Helmholtz wavetrain as
a function of spanwise wavenumber d. The plot shows only the most unstable stationary modes; ×
denotes modes whose spatial structure are to be displayed in figures 8, 10.

3.1. The non-rotating problem

We begin presentation of the results of the stability analyses with those for the
special case f = 0 (Ro−1 = 0) and Fr−2 = 0, which corresponds to the non-rotating
and unstratified problem. Results for this special case have been discussed in detail
by Smyth & Peltier (1994), and we will only provide a brief overview here in order to
fix ideas and to connect the new results that we will obtain to this previous work.

In figure 7, we plot the growth rates, σ, of the most unstable modes for the post-
pairing phase of the Kelvin–Helmholtz flow as a function of the spanwise wavenumber
d. This spectrum is determined by the eigenvalues of the stability matrix, and in it all
modes are stationary (i.e. their growth rates are purely real). The entire set of modes
with growth rates higher than σ = 0.043 is displayed on this figure.

The curve labelled L1 on figure 7 represents the dominant branch of longitudinal
modes in the spectrum and is the counterpart in the present analysis of the structure
first identified by Klaassen & Peltier (1991). It will also be noted that the L1 branch
exhibits a sharp ‘kink’ in the vicinity of d = 0.6. Inspection of the spatial structure
of the modes along this branch reveals that it changes abruptly at this point from
core-centred at low d to braid-centred at high d. The spatial structure of the mode
at the point d = 0.5 is displayed in figure 8(a) in terms of its spatial distribution
of perturbation kinetic energy K ′, spanwise velocity v′ and spanwise vorticity ω′

in the (X,Z)-plane. The perturbation kinetic energy is quadratic in the disturbance
fields, and the figure displays the average of this quantity over a single spanwise
wavelength in the form of a positive real function of x and z. The spanwise velocity
and vorticity perturbations vary sinusoidally with y, and the corresponding parts of
the figure for these eigenfunctions show the corresponding fields evaluated on a plane
of constant y, which has been chosen to coincide roughly with the maximum of the
perturbation quantity. The modal structure displayed in figure 8(a) is core-centred, i.e.
the perturbation fields are focused in the vicinity of the core of the two-dimensional
elliptical billows.

Considering next the spatial structure of the same L1 mode but at the point d = 1.0
(see figure 8b), we note that the kinetic energy perturbation is now concentrated in
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K« v« x«
(a)

(b)

Figure 8. The perturbation kinetic energy K ′, spanwise velocity v′ and spanwise vorticity ω′ fields
in the (X,Z)-plane for the L1 longitudinal mode at the points: (a) d = 0.5 and (b) d = 1.0. Solid
lines show isolines with positive values while dashed lines represent isolines with negative values.
The visual non-dimensional size of the domain is 28× 28.

the hyperbolic regions (braids) located between the Kelvin–Helmholtz vortex cores.
The absolute maximum growth rate along the L1 branch of the modal spectrum is
found near this value of d but this value of the growth rate for the braid-centred
segment of the L1 branch only slightly exceeds the maximum growth rate for the
core-centred segment of this mode. In figures 9(a) and 9(b) we illustrate these two
modes along the L1 branch in the form of isosurfaces of the streamwise component
of the perturbation vorticity field.

Since our interest in this paper is primarily in the stability of isolated columnar
vortices it should be clear that only the core-centred modes of the L1 branch would
exist on an isolated vortex tube since in that circumstance the ‘braid’ region does not
exist.

The other two branches of longitudinal modes labelled L2 and L3 in figure 7 exhibit
only slightly lower maximum growth rates in comparison with the L1 longitudinal
mode. The modes along these branches are all core-centred, and spatial structures for
them, shown in figure 10, are similar to the structure of the core-centred segment of
the L1 branch. It is clear that all of these core-centred modes correspond to the so-
called ‘translative’ or elliptical instability (Pierrehumbert & Widnall 1982; Bayly 1986;
Waleffe 1990; Klaassen & Peltier 1985, 1989, 1991) in that the perturbation vorticity
field ω′ describes a translation of each vortex in the Kelvin–Helmholtz train in the
same direction. Under the assumption that nonlinearity does not alter the fundamental
character of the instability, we may infer the way in which the originally columnar
vortex would be altered by the growth of the linearly unstable mode. Because the
vorticity perturbation is sinusoidal in the y-direction, the translative instability would
initially induce bending of the vortex tubes in a sinusoidal fashion with the wavelength
corresponding to the most unstable wavelength in the spectrum (Pierrehumbert &
Widnall 1982). However, the fastest growing mode in the L1 branch of the spectrum is
not translative and core-centred but rather is braid-centred. The braid-centred mode,
which derives from what we might refer to as hyperbolic instability, is the origin
of the streamwise vortex streaks whose appearance is precursory to the turbulent
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(a) (b)

(c) (d )

Figure 9. Isosurfaces of the streamwise component of the perturbation vorticity field for (a)
the core-centred L1 mode, (b) the braid-centred L1 mode; and the spanwise component of the
perturbation vorticity field for (c) the edge mode E0 and (d) the elliptical mode labelled ε in the
text.

collapse of the unstratified mixing layer (Klaassen & Peltier 1985b, 1991; Smyth &
Peltier 1991, 1994; Caulfield & Peltier 1994).

We consider next the influence of stratification on the stability characteristics of
the post-pairing phase of the elliptical billows. In this case, the gradient of the
background density stratification is in the positive y-direction and thus is orthogonal
to the plane of the two-dimensional flow (see figure 2). Therefore we should expect
that stable stratification would increase the stability of the two-dimensional flow
to three-dimensional perturbations because the stable stratification adds additional
resistance to vertical motion in the system. In the presence of stable stratification the
columnar vortices that characterize the post-pairing phase of the Kelvin–Helmholtz
flow should be less unstable to three-dimensional perturbations.
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K« v« x«
(a)

(b)

Figure 10. The perturbation kinetic energy K ′, spanwise velocity v′ and spanwise vorticity ω′

fields in the (X,Z)-plane: (a) for the L2 longitudinal mode at the point d = 0.5 and (b) for the
L3 longitudinal mode at the point d = 1.0. Solid lines show isolines with positive values while
dashed lines represent isolines with negative values. The visual non-dimensional size of the domain
is 28× 28.
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Figure 11. The instability spectrum for the non-rotating stratified Kelvin–Helmholtz wavetrain as a
function of the inverse square of the Froude number Fr−2 at the point d = 1.0. The plot shows only
the most unstable stationary modes; × denotes a mode whose spatial structure is to be displayed
in figure 12.

On figure 11 we show growth rates of the two most unstable longitudinal modes
as a function of the inverse square of the Froude number Fr−2 at the point d = 1.0.
This point corresponds to the maximum growth rate of the dominant braid-centred
L1 longitudinal mode in figure 7 and, therefore, to the most unstable spanwise
wavenumber in the non-rotating unstratified problem. As expected, the growth rates
of the unstable modes decrease rapidly as the inverse square of the Froude number
rises. The L1 longitudinal mode, which was the most unstable in the non-rotating
unstratified case, remains dominant in the spectrum of the non-rotating stratified
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K « v« x« q«

Figure 12. The perturbation kinetic energy K ′, spanwise velocity v′, spanwise vorticity ω′ and
density ρ′ fields in the (X,Z)-plane for the L1 longitudinal mode at the point Fr−2 = 0.06 (d = 1.0).
Solid lines show isolines with positive values while dashed lines represent isolines with negative
values. The visual non-dimensional size of the domain is 28× 28.
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Figure 13. The instability spectrum for the non-rotating stratified Kelvin–Helmholtz wavetrain as
a function of spanwise wavenumber d at the point Fr−2 = 0.05. The plot shows only the most
unstable stationary modes.

environment. It will be noted that even weak density stratification (Fr−2 = 0.2) forces
the growth rate for this mode to decrease by almost a factor two. The spatial structure
of this mode at the point Fr−2 = 0.06 is presented in figure 12. If we compare this
with the spatial structure of the dominant mode in the unstratified case, it will be clear
that in general the mode becomes more core-centred as the stratification increases.
Maxima of perturbation kinetic energy are now centred closer to the core of the
vortex, while for the unstratified case the mode was shown to nucleate in the braids
between successive billow cores.

The spectrum in figure 11 demonstrates the influence of stratification on the in-
stability process only at the single fixed value of the spanwise wavenumber d = 1.0,
and, therefore, on the basis of this restricted analysis we may say nothing concerning
the behaviour of the unstable modes at different spanwise wavenumbers. To inves-
tigate this aspect of the problem, we have also computed growth rates of the most
unstable modes as a function of the spanwise wavenumber d at fixed Fr−2 = 0.05
and the results are presented in figure 13. If we compare this spectrum to that
for the unstratified problem (see figure 7), it will be noted that the only branch
of longitudinal modes shown on figure 7 which survives in the presence of stratifi-
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cation is the L1 branch. No other modes with growth rates higher than σ = 0.025
exist in the spectrum at this value of the Froude number. The L2 and L3 unstable
longitudinal modes have been entirely stabilized by the stratification and thus dis-
appear from the spectrum. One will also note that the L1 longitudinal mode holds
its position in the spectrum and is not shifted towards higher spanwise wavenum-
bers by the action of stratification. Another important conclusion implied by the
results of these analyses is that the L1 branch is affected unevenly by stratification.
The growth rates for the core-centred part of this longitudinal branch at low span-
wise wavenumbers decrease much more rapidly as the inverse square of the Froude
number rises than the braid-centred (hyperbolic) part of the same branch at high
wavenumbers. This results in strong deformation of the shape of the L1 growth
rate curve by reducing growth rates along the core-centred (elliptical) part of this
branch at low spanwise wavenumbers. The other effect of this scale-selective influence
of the stratification on the L1 branch is that the scale at the absolute maximum
in growth rate is slightly shifted to higher spanwise wavenumbers from d = 1.0 to
d = 1.3.

3.2. The rotating case

Having confirmed the expected stabilizing affect of the density stratification on a
columnar vortex, we are in a good position to add the influence of rotation to the mix
of physical interactions that collectively control the stability of the two-dimensional
column. As previously discussed, we will assume the rotation to be characterized by
angular frequency Ω = 1

2
f, where f is the so-called Coriolis parameter which appears

in the context of analyses of geophysical flows where it represents the local vertical
component of the angular velocity of the planet. The vector of background rotation
is parallel to the y-axis, so that the background vorticity, represented by f, is aligned
with the relative vorticity field of the two-dimensional flow and with the gradient
of the density stratification (see figure 2). Note also that, in the case illustrated, the
relative vorticity of the two-dimensional flow is positive while the vector f points in
the negative direction along the y-axis.

The Taylor–Proudman theorem (e.g. Greenspan 1968) is often interpreted to suggest
that rotating flows should tend to be much more two-dimensional than they would be
in the absence of rotation. In the present context this theorem might be interpreted
to imply that rotating two-dimensional flows should tend to be more stable to three-
dimensional perturbations if the ambient rotation is sufficiently strong (i.e. the Rossby
number is sufficiently small). In the circumstances of interest to us here, the two-
dimensional flow possesses rather strong relative vorticity ω(x, z) concentrated within
the individual vortex cores. If the value of background rotation f is negative, which
corresponds to cyclonic vortices in the present context, three-dimensional motion will
be affected by effectively higher rotation f + ω(x, z) (note again that the vectors f
and ω(x, z) are anti-parallel), and as a result, the rotation may be expected to have a
net stabilizing effect. When the value of the background rotation f is positive, which
corresponds to anticyclonic vortices, however, and when it is close to the value of
the relative vorticity ω(x, z), then the absolute vorticity ω(x, z)− f will be close to
zero and this circumstance might be expected to lead to higher sensitivity of the two-
dimensional flow to three-dimensional perturbations. We might therefore expect that
small positive values of background rotation f will tend to make the two-dimensional
Kelvin–Helmholtz flow less stable to three-dimensional disturbances. We may also
expect that stabilization will be achieved for smaller negative values of background
rotation than for positive values.
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The stability analysis for the special case of rotating unstratified flow (Ro−1 6= 0,
Fr−2 = 0) was discussed in Smyth & Peltier (1994). Here we will briefly review the
basic results for this case and then extend them to the much more mathematically
challenging stratified circumstance.

The stability analysis for the rotating case may be performed using the same two-
dimensional basic state which was employed in the previous subsection (see figures 3
and 6a) because rotation has no effect on the two-dimensional flow itself if the
influence of rotation is considered from an f-plane perspective. In this subsection
we will once more focus our attention entirely on the post-pairing phase of the
two-dimensional flow. There is no significant loss of generality because of this, since
the instability spectra during different phases of two-dimensional flow evolution are
similar to each other and relations among them have been described in detail in Smyth
& Peltier (1994). This will also allow us to avoid the unnecessary complications
that would otherwise arise in dealing with subharmonic and longitudinal modes
simultaneously. Note that during the post-pairing phase there are only longitudinal
modes with wavelength equal to the length of the domain because only a single
vortex exists in the domain (see figure 3) and the periodic boundary conditions
prevent further vortex merging. The time-averaged vorticity field employed for the
calculation of the stability matrix Ā in the post-pairing phase of the two-dimensional
flow is once more that presented in figure 6(a).

Figure 14 shows the instability spectra for the most unstable modes of the rotating
unstratified problem as a function of the inverse Rossby number Ro−1 = f/(U0/h).
The spanwise wavenumber for these calculations was set to d = 1.0 for the analyses
that produced the results shown in figure 14(a) and d = 1.6 for those shown in
figure 14(b). The modal branch with the maximum growth rate at f = 0 is composed
of a sequence of modes with purely real growth rate. This branch clearly represents
the continuation of the L1 longitudinal branch of braid modes (see figures 7 and 8b)
to non-zero values of f. As is clear by inspection of figure 14, the maximum growth
rate of the L1 mode corresponds to the point f = 0 and this mode is rapidly stabilized
for increasing finite |f|. In figure 14(a), and below the L1 branch of modes in growth
rate, there exists a branch of core-centred modes. The growth rates for this sequence
of modes are also purely real and weaker than those along the L1 branch. The spatial
structures of the modes along this branch allows us to identify them as representing
the continuation of the L3 branch of longitudinal modes to non-zero values of f.
Like the L1 mode, the L3 modes have their maximum growth rates at the point f = 0
and growth rate decreases for increasing |f| although the rate of stabilization by
the background rotation is somewhat reduced from that which characterizes the L1

sequence. This mode does not exist for d = 1.6 (see figure 7) and, therefore, it is not
shown in figure 14(b).

The most intense instabilities that arise in the rotating problem, however, are those
that lie along the branch on which growth rate peaks in the vicinity of Ro−1 = 0.2,
in which case the vorticity in the basic state has opposite sign to the background
rotation. Once more the modes along this branch have purely real growth rates.
Figure 15(a) displays the spatial structure of this dominant mode. Its perturbation
kinetic energy is seen to be concentrated in a ring around the two-dimensional
vortex core, so that, following Smyth & Peltier (1994), this mode will be referred to
as the fundamental edge mode E0. This mode represents an entirely new class of
modes which has no counterpart in the non-rotating problem. The mode achieves
its maximum growth rate σ = 0.092 in the vicinity of the point Ro−1 = 0.2, d = 1.6
(see figure 14b) which may be compared to the much lower growth rate σ = 0.06
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Figure 14. The instability spectrum for the rotating unstratified Kelvin–Helmholtz wavetrain as a
function of inverse Rossby number Ro−1 = f(U0/h)

−1 at the point (a) d = 1.0, (b) d = 1.6. The plot
shows only the most unstable modes.

for the fastest growing mode along the L1 branch in the non-rotating problem. This
new mode is therefore expected to play a crucial role in the evolution of anticyclonic
vortices for slow background rotation. The growth rate of the edge mode rapidly
decreases for Ro−1 6 0.07 and Ro−1 > 0.5. As expected on the basis of the previous
comments related to the Taylor–Proudman theorem, we find that fast background
rotation for vortices of either sign strongly stabilizes the two-dimensional coherent
vortical structures to three-dimensional perturbations, while slow rotation, when the
vector f is antiparallel to the vector of relative vorticity ω(x, z), which corresponds to
anticyclonic vortices in our case, acts to destabilize the flow.

The E1 branch of modes that also appears on figure 14 corresponds to the first
harmonic of the edge mode sequence. This mode is weaker than the fundamental and
stationary edge mode E0 but it exhibits sufficiently large growth rate that it could
exert substantial influence on the evolution of the coherent structure, depending on
the initial conditions. Note that the growth rate of the first subharmonic edge mode
E1 is actually higher than the growth rate of the stationary edge mode E0 near
Ro−1 = 0.37. The spatial structure of this mode is similar to the structure of the
stationary edge mode and is not shown here.

The final branch of modes shown on figure 14 (labelled ε) represents a highly
core-centred mode with purely real growth rate. This mode achieves its maximum
growth near the point Ro−1 = 0.3 and its growth rate exceeds the growth rate of the
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Figure 15. The perturbation kinetic energy K ′, spanwise velocity v′ and spanwise vorticity ω′ fields
in the (X,Z)-plane: (a) for the E0 edge mode at the point Ro−1 = 0.21 (d = 1.0) and (b) for the
ε elliptical mode at the point Ro−1 = 0.30 (d = 1.0). Solid lines show isolines with positive values
while dashed lines represent isolines with negative values. The visual non-dimensional size of the
domain is 28× 28.

dominant E0 edge mode at this point. The spatial structure of the mode is shown in
figure 15(b). It is indeed highly core-centred and its structure is similar in form to that
of the core-centred longitudinal modes in the non-rotating case, but we could find no
counterpart of this mode in the non-rotating problem. This branch has been identified
as a mode related to the elliptical instability because it exists only for elliptical vortices
(see the discussion of the results for the circular limit of the ‘Kida-like’ vortex below).
In the previous unstratified rotating analyses of Smyth & Peltier (1994) the ε mode
was overlooked owing to the relatively low resolution at which it was possible to
solve the eigenproblem. In parts (c) and (d) of the previously discussed figure 9 are
shown isosurfaces of the vertical perturbation vorticity field for both the edge and ε
modes.

It was pointed out in Smyth & Peltier (1994) that the physical mechanism of
instability for the edge mode is most usefully understood in terms of the inertial
(centrifugal) mechanism. Rayleigh’s standard criterion (e.g. Chandrasekhar 1968)
for this mechanism asserts that in the absence of viscous effects the necessary and
sufficient condition for a distribution of azimuthal velocity V (r) (where r is the radius)
of an axisymmetric flow to be stable is simply

d

dr
(Vr)2 > 0 (3.1)

everywhere in the interval, and, further, that the distribution is unstable if (Vr)2 should
decrease anywhere within the interval. This criterion may be simply derived using
energy arguments and the same arguments may be applied in a rotating reference
frame, provided that the azimuthal velocity and vorticity are evaluated in the inertial
frame. The simple modification of the usual Rayleigh criterion for stability which
follows from such analysis (Kloosterziel & van Heijst 1991) is just

d

dr
(Vr − 1

2
fr2)2 > 0. (3.2)
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(a) (b)

Figure 16. The modified Rayleigh’s criterion for the post-pairing phase of the Kelvin–Helmholtz
shear flow (a) for slow negative background rotation (anticyclonic vortex) Ro−1 = 0.2, (b) for slow
positive background rotation (cyclonic vortex) Ro−1 = −0.2. Dashed lines reveal the region where
the modified Rayleigh’s criterion is violated (RoṼ − 1

2
r̃)(Roω̃ − 1) < 0.

Note that the original criterion is recovered in the limit f → 0. In terms of non-
dimensional variables we may re-write this extended Rayleigh criterion in the form

(Ro Ṽ − 1
2
r̃)(Ro ω̃ − 1) > 0 (3.3)

in which Ro is the Rossby number, Ṽ is the non-dimensional azimuthal velocity, ω̃ is
the non-dimensional vorticity and r̃ is the non-dimensional radius.

In the case of the specific columnar vortex of interest to us here, the spatial location
of the edge mode corresponds quite closely to the region in which the modified
Rayleigh criterion is violated for an anticyclonic vortex when the background rotation
is relatively slow and, therefore, suggests the possibility of instability (see figure 16a).
On the other hand, the extended Rayleigh criterion for stability is well satisfied for
the same value of background rotation for the cyclonic vortex (see figure 16b) and
in accord with the results of our analysis the edge mode does not exist in this
circumstance.

These arguments allow us to suggest that the instability mechanism for the edge
mode is essentially centrifugal, although it is clear in the present context that
Rayleigh’s assumption of axisymmetric flow is violated. Our fastest growing modes
are found to exist for finite d and their growth rates decrease towards zero in the limit
d→ 0. There is an obvious analogy that may usefully be drawn with the problem of
cylindrical Couette flow.

In figure 17, we plot growth rates of the most unstable edge modes as a function
of the inverse square of the Froude number Fr−2 at the point Ro−1 = 0.21, d = 1.0.
This value of the Rossby number corresponds to the point of greatest instability of
the spectrum shown in figure 14(a). It will be observed by inspection of the results
displayed on the figure that the general behaviour of the most unstable edge modes
in the rotating case, with increasing density stratification, is similar to the behaviour
of the most unstable longitudinal modes in the non-rotating case. As expected, the
growth rates of the unstable modes decrease rapidly as the inverse square of the
Froude number rises. The growth rate of the dominant mode in the unstratified
case (on the E0 branch) decreases dramatically in the presence of stratification at
this wavenumber, and by Fr−2 = 0.03 its growth rate is essentially negligible. At this
value of d, the E1 edge mode then becomes the dominant source of instability in
the spectrum as the stratification increases because it is stabilized much more slowly
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Figure 17. The instability spectrum for the rotating stratified Kelvin–Helmholtz wavetrain as a
function of the inverse square of the Froude number Fr−2 at the point d = 1.0, Ro−1 = 0.21. The
plot shows only the most unstable modes.

than is the E0 mode. In general, however, the edge modes remain dominant in the
spectrum for this Rossby number and we do not observe the appearance of any
additional modes of instability.

In figure 18, we show the growth rate spectrum for the most unstable modes
of the rotating stratified problem as a function of the inverse Rossby number
Ro−1 = f/(U0/h) at fixed Fr−2 = 0.05. The spanwise wavenumber was taken to be
d = 1.0 in figure 18(a) and d = 2.5 in figure 18(b). Comparing these results with
the modal spectra shown on figure 14, we may conclude that, similarly to the non-
rotating problem (see figures 7 and 13), stable stratification affects different modes of
instability unevenly. The fundamental and the most unstable mode for the rotating
unstratified problem, the E0 edge mode, is stabilized most rapidly and disappears
from the spectrum by Fr−2 = 0.05 at d = 1.0. At the same time this mode continues
to exist at the higher spanwise wavenumber d = 2.5 and maximum growth occurs
at the same value of Ro−1. It can then be concluded that the scale-selective action
of stable stratification on the unstable modes shifts the scale of maximum growth
of the E0 edge mode to slightly higher wavenumbers compared with the unstratified
case. The first harmonic of the fundamental branch of edge modes, E1, is affected less
strongly by the stratification and still exists in the instability spectra for both values
of d. Maximum growth rate continues to occur at the same value of Ro−1, although
the form of the E1 curve is slightly deformed. The L1 longitudinal branch also re-
mains in the spectrum and continues to exhibit maximum growth at zero background
rotation. The elliptical mode labelled ε is the mode which is least affected by stable
stratification, and its growth rate is far in excess of the edge branch of modes. As
stated previously, the elliptical mode has not been identified in any previous analysis
of this kind.

On the basis of the analyses presented in this section we may conclude that
stable stratification stabilizes the barotropic vortex column generated by the pairing
interaction in the shear layer. This is the case both in the presence and in the absence
of rotation, although the influence of stable stratification is strongly scale selective.
We do not observe the appearance of new unstable modes in the stratified case, and
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Figure 18. The instability spectrum for the rotating stratified Kelvin–Helmholtz wavetrain as a
function of inverse Rossby number Ro−1 = f(U0/h)

−1 at the point Fr−2 = 0.05 and (a) d = 1.0, (b)
d = 2.5. The plot shows only the most unstable modes.

we may therefore conclude that the mechanisms of instability remain the same in the
presence of stable stratification. The only effect introduced by the density stratification
is the rapid stabilization of all unstable modes as the inverse square of the Froude
number rises. As mentioned above, this result was not unexpected.

4. Columnar vortex stability: the Kida-like model
In the previous section we discussed the results obtained on the basis of three-

dimensional instability analyses of the vortex column formed by the merger of two
Kelvin–Helmholtz vortices. In the next step of analysis, we wish to examine the
influence of the precise form of the background vorticity distribution inside the
vortex core on the dominant modes of three-dimensional instability of a vortex
column under the action of background rotation and stratification. In order to study
this aspect of the problem, we will employ the second model (the Kida-like model)
described above as the vorticity distribution in the two-dimensional basic state for
the purpose of the three-dimensional stability analyses. Our intention is to compare
the stability properties of the Kida-like model to three-dimensional perturbations
with the stability properties previously derived using the much more complex quasi-
elliptical and quasi-Gaussian continuous vorticity distribution produced as numerical
end product of a single pairing interaction between two Kelvin–Helmholtz billows.
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Figure 19. The instability spectra for (a) the rotating unstratified Kida-like model vortex as a
function of inverse Rossby number Ro−1 = f(U0/h)

−1 at the point d = 1.0 and (b) the rotating
stratified Kida-like model vortex as a function of the inverse square of the Froude number Fr−2 at
the point d = 1.0, Ro−1 = 0.17. The plot shows only the most unstable modes.

4.1. The Kida-like vortex with ellipticity matched to the Kelvin–Helmholtz case

We begin by directing attention to the Kida-like vortex with the ellipticity set equal
to that of the time-averaged vorticity field that arose in the post-pairing phase of the
evolving free shear layer and will first focus our attention on an investigation of the
rotating unstratified problem (Ro−1 6= 0, Fr−2 = 0). Figure 19(a) presents growth rates
for the most unstable modes as a function of inverse Rossby number (Ro−1) with
the spanwise wavenumber fixed to the value d = 1.0. If one compares this instability
spectrum with that for the rotating unstratified analysis of the Kelvin–Helmholtz
billow (see figure 14), it is very clear that a high degree of similarity exists. The
dominant mode in the spectrum for the anticyclonic vortex, when the background
rotation is relatively slow, once more has purely real growth rate. The eigenfunctions
that determine the spatial localization of this mode are again concentrated in a ring
surrounding the core of the background vortex and the spatial structure of the mode
(not shown here) is therefore similar to the E0 edge mode for the Kelvin–Helmholtz
basic state (see figure 15a). The E0 mode for the Kida-like model achieves its maximum
growth rate at slightly higher Rossby number corresponding to Ro−1 = 0.17 compared
to Ro−1 = 0.21 for the Kelvin–Helmholtz basic state. The growth rate of this mode also
rapidly decreases for Ro−1 < 0.05 and Ro−1 > 0.35. The E1 branch again corresponds
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to the first harmonic of the edge mode sequence. It is slightly weaker than the
fundamental mode in the case of the Kelvin–Helmholtz shear flow and has similar
spatial structure. This mode becomes dominant in the region Ro−1 > 0.3, again
similar to the result obtained for the Kelvin–Helmholtz case. The branch of modes
with maximum growth rate for small Ro−1 may be identified as the L1 longitudinal
mode and clearly corresponds to the L1 mode for the Kelvin–Helmholtz vortex. In
the present case of the Kida-like vortex, however, the L1 longitudinal mode exhibits
maximum growth rate at Ro−1 = −0.04, while in the case of the Kelvin–Helmholtz
background flow the L1 mode has maximum growth rate for precisely zero background
rotation. The last modal curve, labelled ε, exhibits highly core-centred spatial structure
and is similar to the elliptical mode that was shown to exist in the case of the Kelvin–
Helmholtz billow. In the present case, however, the mode exhibits maximum growth
rate at the slightly lower value of background rotation Ro−1 = 0.25 in comparison
with Ro−1 = 0.30 for the Kelvin–Helmholtz basic state. It will also be noted that the
growth rate of this mode does not exceed the growth rate of the edge branch of modes
for any value of the background rotation at the spanwise wavenumber d = 1.0.

To continue our analysis of the stability of the Kida-like vortex, we investigate the
influence of stratification on the rotating problem at the point which corresponds to
the most unstable Rossby number. Figure 19(b) presents growth rates for the most
unstable modes as a function of the inverse square of the Froude number for the
rotating stratified Kida-like model vortex at Ro−1 = 0.17. Again, inspection of the
resulting spectrum for the Kida-like model reveals great similarity in its general form
to the spectrum for the Kelvin–Helmholtz vortex (see figure 17). The E0 edge mode
is rapidly quenched as the inverse square of the Froude number increases, and the
growth rate of the mode is reduced by more than a factor two by Fr−2 = 0.05. The
behaviour of this mode is therefore very similar to the behaviour of the E0 mode
in the spectrum of the Kelvin–Helmholtz vortex, but the E0 edge mode is stabilized
about twice as rapidly by increasing stratification as is the case in the spectrum of the
Kelvin–Helmholtz flow. Again, the E1 mode is stabilized much more slowly than the
E0 mode at this wavenumber and becomes dominant in the spectrum for sufficiently
large Fr−2.

Thus, the general behaviour of the unstable modes and thus the instability mech-
anisms for the rotating stratified and rotating unstratified cases of the elliptical
Kida-like model vortex are very similar to those for the Kelvin–Helmholtz vortex. We
have therefore demonstrated that the details of the vorticity distribution in elliptical
vortices do not significantly influence the instability of the coherent columnar vortical
structure to three-dimensional perturbations.

4.2. The circular limit of the Kida-like model

A further issue that clearly arises from these analyses concerns the influence of the
ellipticity of the background vortex itself on three-dimensional instability. It might be
expected that the ellipticity should not significantly influence the instability mechanism
for rotating and stratified cases, at least for modes which are not themselves essentially
elliptical (translative) in their nature. To investigate the validity of this assumption
we have also performed similar instability analyses using the circular limit of the
Kida-like model vortex as the two-dimensional background vorticity distribution for
the linear three-dimensional stability analysis.

We begin once more with an investigation of the rotating unstratified prob-
lem (Ro−1 6= 0, Fr−2 = 0 ). The instability spectrum for this case for the spanwise
wavenumber d = 1.0 is shown in figure 20(a). Only the most unstable modes are pre-
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Figure 20. The instability spectra for (a) the rotating unstratified circular vortex as a function inverse
Rossby number Ro−1 = f(U0/h)

−1 at the point d = 1.0 and (b) the rotating stratified circular vortex
as a function of the inverse square of the Froude number Fr−2 at the point d = 1.0, Ro−1 = 0.15.
The plot shows only the most unstable modes.

sented. As expected, the general form of the spectrum is similar to the corresponding
spectrum for the elliptical Kida-like vortex (see figure 19a) and the Kelvin–Helmholtz
vortex (see figure 14) cases. The fundamental harmonic E0 of the edge mode family is
again the dominant mode of instability for anticyclonic vortices when the background
rotation is relatively slow. The mode reaches its maximum growth rate at the point
Ro−1 = 0.15, which is close to the value at which the elliptical Kida-like vortex was
found to be most unstable (Ro−1 = 0.17). The first harmonic E1 of the edge mode
sequence is in general slightly weaker than the E0 mode but again becomes dominant
in the region Ro−1 > 0.3. Its spatial structure is similar to that of the dominant
E0 mode. The growth rates of all edge modes decrease rapidly to zero in the region
Ro−1 < 0.15 and Ro−1 > 0.30. In the region of high Rossby numbers corresponding to
slow or vanishing background rotation the L1 longitudinal mode is again dominant.
It achieves maximum growth rate at the point Ro−1 = −0.04 but remains dominant
in the non-rotating case (Ro−1 = 0). The main difference in the spectrum for the
circular Kida-like vortex from those for the Kelvin–Helmholtz elliptical billow and
the elliptical Kida-like vortex is that the elliptical ε mode no longer exists. This fact
rather clearly justifies the identification of this unstable mode as an elliptical instabil-
ity. The existence of this elliptical mode is determined not only by the ellipticity of the
vortex but also by the background rotation. Similarly to the edge mode, this elliptical
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mode exists in instability spectra only for anticyclonic vortices when the background
rotation is relatively slow.

Figure 20(b) presents the spectrum for the rotating stratified case of the circular
vortex at the point Ro−1 = 0.15, which corresponds to the most unstable Rossby
number in the unstratified case for the spanwise wavenumber d = 1.0. Only the most
unstable modes are shown. Again as expected, the behaviour of the spectrum is very
similar to that realized in the case of both the elliptical vortex (see figure 19b) and the
Kelvin–Helmholtz vortex (see figure 17). The E0 edge mode, which is dominant in the
unstratified case, stabilizes quickly and disappears by Fr−2 = 0.05. The first harmonic
E1 of the edge mode family stabilizes more slowly than the principal E0 mode as the
inverse square of the Froude number rises and soon becomes dominant.

On the basis of this example, we may conclude, because the instability spectra
for the circular and elliptical Kida-like vortices differ only slightly, that the basic
ellipticity of coherent vortical structures in strain does not significantly influence their
dominant mechanisms of instability, except over the limited range of background
rotation in the vicinity of Ro−1 = 0.3 where the elliptical mechanism of instability
exists only if the columnar vortex itself has an elliptical cross-section.

5. Summary
The goal of the analyses presented herein has been to investigate the linear stability

of two-dimensional, columnar, vortical basic states to three-dimensional perturbations
in the presence of both background rotation and stable stratification. For the purpose
of these analyses, it has been assumed that the stabilizing basic-state density gradient
is aligned with the axis of the basic-state vortex tube but that the basic-state rotation
may be either positive (in the same sense as the vorticity in the basic state), which
corresponds to the cyclonic vortex in our context, or negative (in the opposite sense as
to the vorticity in the basic state), which corresponds to the anticyclonic vortex. The
influence of rotation on the stability characteristics of the flows has been included
in the f-plane approximation. The Boussinesq approximation has been employed in
accounting for the influence of density stratification.

The methodology that we have developed for performing such theoretical linear
stability analyses is by now well-known. It enables us to reduce the three-dimensional
linear perturbation equations that determine the stability of a two-dimensional basic
state into the form of a standard matrix eigenvalue problem whose solution reveals
the instability characteristics of the two-dimensional background flow. The theoretical
methodology previously devised has been extended herein so as to enable us to
incorporate the influence of stable density stratification along the axis of the basic-
state barotropic vortex.

In the initial stage of the analyses reported herein, we focused on the stability
of a train of two-dimensional Kelvin–Helmholtz billows. It had been demonstrated
in previous work (Smyth & Peltier 1994) that instability characteristics of the flow
for the pre-pairing, pairing and post-pairing phases of the Kelvin–Helmholtz flow
in the absence of rotation and stratification were self-similar. This clearly allowed
us to direct our attention to a single post-pairing phase in the evolution of the
train of vortical structures, and on the basis of our analyses to reconfirm the results
obtained in this previous work. It has been found that the spectrum of secondary
instability is dominated at low spanwise wavenumbers (d < 0.6) by the core-centred
segment of the L1 branch of longitudinal modes in which the perturbation kinetic
energy is concentrated in the vortex cores, but for high wavenumbers (d > 0.6) by the
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segment of the L1 branch of longitudinal modes in which the perturbation kinetic
energy is concentrated in the strained regions between the primary vortices. The
most unstable point in the spectrum corresponds to spanwise wavenumbers close to
d = 1.0, confirming the results of the instability analysis reported previously by Smyth
& Peltier (1994) which were conducted at lower resolution.

Our first extension of this previous work to the non-rotating and along-axis-
stratified Kelvin–Helmholtz flow (Ro−1 = 0, Fr−2 > 0) revealed that the L1 branch of
longitudinal modes remains dominant in the spectrum but that even weak density
stratification (Fr−2 ≈ 0.2) forces the growth rate for this mode to decrease substan-
tially. For sufficiently strong density stratification the three-dimensional instability
would appear to be entirely suppressed. No additional modes of instability appear in
the spectrum as a consequence of the stratification.

In the next step of our analysis, we recovered the results of previous analyses
(Smyth & Peltier 1994) for the rotating unstratified Kelvin–Helmholtz vortex train.
We thereby sought to demonstrate that weak rotation which tends to bring the
absolute vorticity of the two-dimensional anticyclonic flow closer to zero acts to
destabilize the flow. Maximum destabilization was found at the vicinity of the point
Ro−1 = 0.2, d = 1.6. The perturbation kinetic energy of the most unstable mode
was shown to be concentrated around the edge of the two-dimensional vortex and,
therefore, we continue to refer to this mode, following Smyth & Peltier (1994), as the
edge mode. For this wavenumber the maximum growth rate for the E0 edge mode
is σ = 0.092 for non-zero background rotation in comparison with σ = 0.06 on the
L1 branch of longitudinal modes for the non-rotating case. Therefore, the edge mode
is expected to play a crucial role in the evolution of columnar vortex flow in the
presence of background rotation. We have also provided good reason to believe that
the mechanism that underlies the edge modes is essentially centrifugal. The spatial
location of the edge modes does indeed correspond in an approximate sense to the
region in which the modified Rayleigh stability criterion is violated. It is important
to note, however, that Rayleigh’s assumption of axisymmetric flow may be strongly
violated in our case. As expected in consequence of the Taylor–Proudman theorem,
however, we found that sufficiently rapid background rotation of either sign acts to
strongly stabilize the vortical structure to three-dimensional perturbations.

Our analyses for the rotating stratified Kelvin–Helmholtz wavetrain have shown
that the influence of stable stratification on the modes of instability is similar to
the effect demonstrated for the non-rotating stratified case, namely that the growth
rates of the most unstable modes decrease rapidly as the inverse square of the
Froude number rises. The growth rate of the E0 edge mode, which is the dominant
mode in the unstratified case, decreases most dramatically with Fr−2. The E1 edge
mode, however, stabilizes much more slowly and, therefore, becomes the dominant
mode in the spectrum of anticyclonic vortices for slow background rotation. The
elliptical ε mode is the least affected by stable stratification and starts to play a
crucial role in the vicinity of Ro−1 = 0.3. This result is extremely important insofar
as the applicability of our theory to the understanding of a number of applications
in geophysically interesting circumstances is concerned. Consider, in particular, the
interesting observation that the anticyclonic vortices that one would expect to observe
in the von Kármán vortex street that is often seen in satellite images of the flow
in the lee of oceanic islands are often absent, as illustrated in figure 1(b). If, as we
suggest might on occasion be the case, the destruction of the anticyclonic columns
could be due to the edge mode, it is clearly important that the mode survives in the
presence of finite density stratification parallel to the axis of the vortex tubes. It is also
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important that sufficiently strong density stratification will suppress the destruction
of anticyclones, thus allowing the existence of a complete von Kármán street, as is
also observed (see figure 1a).

The final aspect of the coherent structure destruction mechanisms analysed herein
has involved an investigation of the influence of the background vorticity distribution
in the vortices as well as the ellipticity of the vortex itself on the stability charac-
teristics of vortex tubes in rotating unstratified and rotating stratified environments.
In order to investigate these issues, we have employed a model which is similar to
the Kida model as basic-state vorticity distribution in the three-dimensional linear
stability analysis. Two different cases were analysed in detail, namely the case of
the elliptical Kida-like model vortex with the ellipticity set equal to the ellipticity of
the time-averaged vorticity field for the post-pairing phase of the Kelvin–Helmholtz
shear flow and the circular limit of the elliptical Kida-like model. Through analyses
of the former case we demonstrated that the details of the vorticity distribution in an
elliptical vortex do not significantly influence its stability characteristics. Through the
analysis of stability of the circular limit of the Kida-like model we showed that even
the ellipticity itself does not significantly influence the stability characteristics of the
coherent structure, except over the limited range of background rotation in the vicinity
of Ro−1 = 0.3 where a new elliptical mechanism of instability exists. This branch of
unstable modes has not previously been identified. Our analyses of the rotating and
stratified cases of the above vorticity distributions have demonstrated that instability
spectra for the elliptical and the circular vortices are very similar to the spectra for the
Kelvin–Helmholtz vortex. We therefore expect the main features of our results to carry
over directly to the understanding of a variety of geophysical circumstances in which,
at moderately large Rossby numbers (Ro > 1), anticyclonic vortex columns might be
expected but are nevertheless not observed. Probably the most important of these
circumstances concerns the above-mentioned asymmetry that is often seen to charac-
terize the von Kármán vortex street that forms in the atmosphere in flows over and
around oceanic islands. The anticyclonic elements of the street are often absent and
the Rossby number characteristic of the environment is, indeed, moderately high. Our
estimation of the inverse Rossby number for the von Kármán vortex street presented
in figure 1 gives 1/Ro = 0.27–0.45. It should be noted that these values of the Rossby
number are very close to the most unstable region in the spectra presented in figure 14.
The existence of this broken symmetry associated with the selective destruction of
anticyclones at moderate Rossby number has also been very clearly revealed in the nu-
merical simulation of stratified rotating turbulence reported by Bartello et al. (1994).

By way of final comment it is also important to note that we have made no
explicit effort here to connect our results on the stability of columnar vortices at
moderate Rossby number to the recent results of Dritschel & de la Torre Juarez
(1996) for the same stability problem at very small Rossby number in which regime
the quasi-geostrophic approximation may be valid (e.g. Pedlosky 1987). The fact that
these authors find instability to persist into this regime suggests that it should prove
interesting to extend the work discussed herein to explore the asymptotic properties
of the solution for Ro � 1. Such analyses will be described elsewhere.

We are grateful to Dr Ian Renfrew for providing us with the satellite images
employed to construct figure 1. We are also indebted to an anonymous referee
for helpful comments that have significantly improved our discussion of the time-
dependent stability problem embodied in equation (2.20). The research reported in
this paper has been supported by NSERC Grant A9627.
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Appendix
Explicit mathematical expressions for the four-dimensional coefficient arrays that

appear in equations (2.15), (2.17) and (2.18) are as follows:

(1 + δµ0)〈UU〉kµλν = −iλα〈F∗kµŨFλν〉 − 〈F∗kµŨxFλν〉+ Dν〈F∗kµW̃Gλν〉+
ikαDν
RoAkµ

〈F∗kµGλν〉

+2
λkα2

Akµ
〈F∗kµŨxFλν〉+ 2

ikαDν
Akµ

〈F∗kµW̃ xGλν〉 −
1

Re
Aλνδkλδµν(1 + δµ0),

(1 + δµ0)〈UW 〉kµλν = −〈F∗kµŨzGλν〉 −
λkα2

RoAkµ
〈F∗kµGλν〉

+2
λkα2

Akµ
〈F∗kµŨzGλν〉 − 2

ikαDν
Akµ

〈F∗kµW̃ zFλν〉+
1

Ro
〈F∗kµGλν〉,

(1 + δµ0)〈Uρ〉kµλν = − dkα

Fr2Akµ
〈F∗kµGλν〉,

(1 + δµ0)〈VU〉kµλν =
idDν
RoAkµ

〈F∗kµGλν〉+
2dλα

Akµ
〈F∗kµŨxFλν〉+

2idDν
Akµ

〈F∗kµW̃ xGλν〉,

(1 + δµ0)〈VV 〉kµλν = −iλα〈F∗kµŨFλν〉+ Dν〈F∗kµW̃Gλν〉 −
Aλν

Re
δkλδµν(1 + δµ0),

(1 + δµ0)〈VW 〉kµλν = − dλα

RoAkµ
〈F∗kµGλν〉+

2dλα

Akµ
〈F∗kµŨzFλν〉 −

2idDν
Akµ

〈F∗kµW̃ zFλν〉,

(1 + δµ0)〈Vρ〉kµλν =
1

Fr2

(
1− d2

Akµ

)
〈F∗kµGλν〉,

〈WU〉kµλν = −〈G∗kµW̃ xFλν〉 −
DνDµ

RoAkµ
〈F∗kµGλν〉

+
2iλαDµ
Akµ

〈F∗kµŨxFλν〉 −
2DνDµ
Akµ

〈F∗kµW̃ xGλν〉 −
1

Ro
〈G∗kµFλν〉,

〈WW 〉kµλν = −iλα〈G∗kµŨGλν〉 − Dν〈G∗kµW̃Fλν〉 − 〈G∗kµW̃ zGλν〉 −
iλαDµ
RoAkµ

〈F∗kµGλν〉

+2
iλαDµ
Akµ

〈F∗kµŨzFλν〉+
2DµDν
Akµ

〈F∗kµW̃ zFλν〉 −
1

Re
Aλνδkλδµν ,

〈Wρ〉kµλν = − idDµ
Fr2Akµ

〈F∗kµGλν〉,

〈ρU〉kµλν =
λα

d
〈G∗kµFλν〉,

〈ρV 〉kµλν = −〈G∗kµFλν〉,

〈ρW 〉kµλν = − iDν
d
〈G∗kµFλν〉,

〈ρρ〉kµλν = −Dν〈G∗kµW̃Fλν〉 − iλα〈G∗kµŨGλν〉,

where

〈?〉 =
α

πH

∫ 2π/α

0

dx

∫ H

0

? dz,

Dν =
νπ

H
, Aλν = (λα)2 + d2 + D2

ν .
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